7/l MINIMAX

MiniMax-01: Scaling Foundation Models with
Lightning Attention

MiniMax!

We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable
to top-tier models while offering superior capabilities in processing longer contexts. The core lies
in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it
with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of
which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly
efficient computation-communication overlap techniques for MoE and lightning attention. This approach
enables us to conduct efficient training and inference on models with hundreds of billions of parameters
across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1
million tokens during training and extrapolate to 4 million tokens during inference at an affordable
cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion
vision-language tokens. Experiments on both standard and in-house benchmarks show that our models
match the performance of state-of-the-art models like GPT-40 and Claude-3.5-Sonnet while offering a
20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-Al.

100 GPT-40 (11-20) Claude-3.5-Sonnet (10-22) Gemini-2.0-Flash (exp) Qwen2.5-72B-Inst. DeepSeek V3 Llama-3.1-405B-Inst. =W MiniMax-Text-01 L
&)
88.5 89.0 86.9 \._'-\ 0.95
e lir— .
80 75.7 77.4 . \
.
67.4 . l\
o= g
60 54.4 * L]
. 0.90
. P
40 ' 2
. @
- . -
£ 2 b 3
~ sl
a MMLU MMLU-Pro C-SimpleQA IFEval GPQA MATH Humaneval ~00.85=
v
g (a) Core text benchmark performance g
E GPT-40 (11-20) Claude-3.5-Sonnet (10-22) Gemini-2.0-Flash (exp) Qwen2-VL-72B-Inst. InternVL2.5-788B Llama-3.2-90B == MiniMax-VL-01 g
©
100 96.4 H
91.7 0.80 2
83.3 865
80
68.5 68.6
60 52.7 GPT-40 (11-20) 0.75
Claude-3.5-Sonnet (10-22)
40 =@®= Gemini-1.5-Pro (002)
Gemini-2.0-Flash (exp)
=Hl= MiniMax-Text-01
20 0.70

MMMU MMMU-Pro ChartQA DocVQA AI2D MathVista OCRBench o R A S\
K RN

(b) Core multimodal benchmark performance (c) Long-context RULER performance

Figure 1 | Benchmark performance. (a) MiniMax-Text-01 on core text benchmarks. (b) MiniMax-
VL-01 on core multimodal benchmarks. (¢) MiniMax-Text-01 on the long-context RULER (Hsieh et al.,
2024) benchmark. The performance of leading commercial and open-source models is presented for
reference.

Lplease send correspondence to model@minimaxi.com.

© 2025 MiniMax. All rights reserved

https://github.com/MiniMax-AI

MiniMax-01: Scaling Foundation Models with Lightning Attention

1. Introduction

Large Language Models (LLMs) (Anthropic, 2024; Dubey et al., 2024; Hurst et al., 2024; Team et al.,
2024a) and Vision Language Models (VLMs) (Anthropic, 2024; Dubey et al., 2024; Hurst et al., 2024;
Team et al., 2024a) have made rapid progress in recent years, excelling at tasks like knowledge Q&A,
complex reasoning, mathematics, coding, and vision-language understanding. The context window
for most models currently ranges from 32K to 256K tokens. However, these lengths often fall short of
practical needs—whether using a professional book as context, assisting with an entire programming
project, or maximizing the potential of in-context learning through many-shot examples.

Context window expansion in the past two years has primarily resulted from more powerful GPUs
and better I/O-aware softmax attention implementation (Dao et al., 2022; Liu et al., 2024a). However,
extending these windows further has proven challenging. This limitation arises from the inherent
quadratic computational complexity of the transformer (Vaswani et al., 2017) architecture—further
length extension causes computational demands to grow much faster than hardware capabilities
can match. To address this challenge, researchers have proposed various methods for reducing the
attention mechanism’s computational complexity: sparse attention (Beltagy et al., 2020; Zaheer et al.,
2020), linear attention (Qin et al., 2022a,b, 2024c¢), long convolutions (Qin et al., 2023a), state space
models (the Mamba series) (Dao and Gu, 2024; Glorioso et al., 2024; Gu and Dao, 2024; Ren et al.,
2024; Team et al., 2024b), and linear RNNs (Qin et al., 2023b, 2024d). Despite their theoretical
promise, these innovations have seen limited adoption in commercial-scale models.

In this report, we aim to build a model that matches the performance of leading commercial
models while providing a context window longer by an order of magnitude. This ambitious objective
requires carefully balancing multiple factors: network architecture, data, and computation.

Our approach begins with selecting the most promising architecture, succeeded by the optimization
of the underlying training and inference framework to ensure its support. For the network architecture,
we required linear attention—not just theoretically sound but highly efficient in practice, especially
with long contexts. After extensive experimentation, we settled on a hybrid architecture mainly
using lightning attention (Qin et al., 2024b), an I/O-aware implementation of a linear attention
variant (Qin et al., 2022a). In the architecture, one transformer block with softmax attention follows
every seven transnormer blocks (Qin et al., 2022a) with lightning attention.

We determined the model’s total parameters based on a practical constraint: the ability to process
more than 1 million tokens on a single machine with up to 8 GPUs and 640GB memory using 8-bit
quantization. To maximize parameter and computation capacity, we implemented a Mixture of
Experts (MoE) (Fedus et al., 2022; Lepikhin et al., 2021). We comprehensively consider training
resources, inference resources, and the final model performance, aiming to find a better balance
among the three. Extensive experiments guided us toward the final model specifications: 456 billion
parameters, 45.9 billion activations, and 32 experts.

Existing distributed training and inference frameworks are primarily optimized for softmax atten-
tion. However, our novel architecture, which integrates lightning attention, softmax attention, and
MOoE, necessitates a complete redesign of both our training and inference frameworks. Furthermore,
the framework must possess the capability to support the training and inference of models with
hundreds of billions of parameters and context windows extending over millions of tokens. To this
end, we implement the all-to-all communication in MoE using expert parallel (EP) and expert tensor
parallel (ETP). It aims to minimize the overhead associated with inter-GPU communication. To
facilitate context windows with unlimited expansion, we design varlen ring attention to reduce the
redundancy in computation and the improved version of Linear Attention Sequence Parallelism (LASP)
(Sun et al., 2024) to fully utilize the device’s parallel capabilities. Additionally, we have implemented

MiniMax-01: Scaling Foundation Models with Lightning Attention

a comprehensive set of CUDA kernels tailored for lightning attention inference, achieving over 75%
Model Flops Utilization (MFU) (Chowdhery et al., 2023) end-to-end on the Nvidia H20.

Building upon the architecture design and computation optimizations, we train our foundational
language model, MiniMax-Text-01. Our pre-training process began with curating a diverse and
high-quality corpus through rigorous data cleaning, reward-based quality enhancement, and better

data mixture balancing, validated through sys-

e 53 2omet (1022) APl won beeecervs ar - ememmmarotor me0 tematic repetition-aware testing. To fully uti-

o lize the architecture’s long-context capability,
100,000 we introduce in-depth analysis of the hyper-
parameters and propose a three-stage training
600,000 procedure, successfully extending the context
® window to one million tokens. During the align-
S ment phase, we incentivize the model’s various
capabilities through precisely tuned reward di-
ki './ St mensions and multi-stage training methodology,
' = o especially in the areas of long-context and real-
200,000 world scenarios. Subsequently, we augment
N our language model with visual capabilities by

100:000 /-/ integrating a lightweight Vision Transformer
. .“_-;_..._.---—-—'/' (ViT) (Dosovitskiy et al., 2021) module, thereby
& &) creating our vision-language model, Mir'li.Max-

Context Window Length (#Tokens) VL-01. MiniMax-VL-01 undergoes additional

) .) training with 512 billion vision-language tokens,
Figure 2 | Prefilling latency of different models. ilizing a four-stage training process. The final
The MiniMax-Text-01 and Llama3-70B models are stage of this training is specifically designed to

tested on H800 GPUs with tensor parallelism set to gptimize the user experience.

8, utilizing a custom inference framework with 8-

bit weight-only quantization (W8A16). Other mod- Comprehensive evaluations on core aca-
els are tested through their official APIs. Within ~ demic benchmarks demonstrate that both mod-
the maximum length supported by each model, a els attain performance levels comparable to
sufficient number of uniformly distributed points those of closed-source top-tier models in both
were selected for testing. After removing outliers, t€Xt and vision-language tasks, as illustrated

the data is fitted with a quadratic function. in Figure 1 (a,b). For contexts longer than
200k, our model performs significantly better,

as shown in Figure 1 (c). In addition to academic benchmarks, we also assess the models’ performance
using in-house benchmarks derived from real-world usage and show that our model is top-tier in
those scenarios. In addition to its performance, our model exhibits significant advantages in prefilling
latency, attributed to its novel architecture, as illustrated in Figure 2.

500,000

400,000

Latency (ms)

AL s o
Fgrgt o

We summarize our contributions as follows:

1. We build a model that rivals the top-tier closed-source models on standard academic bench-
marks. Furthermore, this model supports context inputs of up to 4 million tokens, showcasing
outstanding performance in long-context evaluations.

2. We demonstrate the first successful large-scale implementation of linear attention. While
linear attention has been studied before, it has never been deployed at this scale. We provide
comprehensive details on our algorithm design and engineering optimizations.

3. We outline a practical approach and experimental methodology for the exploration of various
models, datasets, evaluations, and algorithms, which may serve as a valuable reference.

4. We publicly release the weights and offer a cost-effective API, aiming to help others develop

MiniMax-01: Scaling Foundation Models with Lightning Attention

models that push beyond current limitations.

2. Model Architecture

In this section, we present the design of our network architecture. To achieve optimal performance
within constrained resources and better handle longer sequences, we adopt MoE approach and employ
linear attention as much as possible instead of the traditional softmax attention used in standard
transformers.

To facilitate a more intuitive understanding, we illustrate the main architecture in Figure 3. Our
design follows the Transformer-style block, with each comprises a channel mixer (an attention block)
and a feature mixer (an MLP block). We employ two types of channel mixers: lightning attention and
softmax attention. The feature mixer is an MoE that incorporates multiple feed-forward networks
(FFNs). To ensure load balancing in the MoE blocks, we propose a novel load balancing strategy
inspired by GShard (Lepikhin et al., 2021), which we refer to the global router. This strategy is
designed to maintain training stability. Addi-
tionally, DeepNorm (Wang et al., 2024a) is in-
tegrated to enhance overall performance. | CRSNam) |

Output Hidden

The final MiniMax-Text-01 architecture inte-
grates both linear attention and softmax atten-
tion mechanisms in a structured pattern. Specif-
ically, a transformber block with softmax at-
tention is positioned after every 7 transnormer
blocks (Qin et al., 2022a) of linear attention,
leading to a total of 80 layers. Each atten-
tion module is composed of 64 heads, each
with a head dimension of 128. The softmax
attention layers employ Group Query Attention
(GQA) (Ainslie et al., 2023) with a group size
of 8. Rotary Position Embedding (RoPE) (Su
et al., 2024) is applied to half of the attention
head dimension, with a base frequency set to
10,000. The model’s hidden size is configured
to 6144, and each layer incorporates 32 experts
with a top-2 routing strategy. The feed-forward
network within each expert has a hidden dimen-
sion of 9216. In total, MiniMax-Text-01 com-
promises 456 billion parameters, of which 45.9 Figure 3 | The architecture of MiniMax-Text-01.
billion are activated for each processed token.

In the subsequent sections, we will delve into our considerations regarding the model architecture,
i.e., the integration of different attention mechanisms, the synergy between MoE and linear attention,
the rationale behind hyperparameter selection, and the methodology for determining the model’s
size based on scaling laws.

2.1. Mixture of Experts

MOoE provides a pathway to enhance both scalability and efficiency compared to the dense version.
Typically, MoE is a substitute for the feed forward networks (FFN) in feature-mixer layers (Fedus

MiniMax-01: Scaling Foundation Models with Lightning Attention

HellaSwag WinoGrande Natural Questions PIQA TriviaQA

0.73 0.68 0.16 0.79 0.48
oo

0.77

Metric

0.73

—— 7B-Dense
2B-MoE

0 3 6 9 12 o 3 6 9 12 0 3

6 9 12 "o 3 6 9 12 7o 3 6 9 12
ZFlops

Figure 4 | Isoflop Comparison: MoE vs. Dense on various benchmarks. Both models are trained
on 1 trillion tokens. The gray dashed lines indicate the difference in the computation required for the
two models to achieve the same performance.

et al., 2022; Lepikhin et al., 2021), which consists of multiple FFN experts, where each token is routed
to one or more of these experts. Specifically, for an input token x,, its corresponding output hidden
state h; is calculated as:

E
h = > Softmax; (TopK(x; - W,)) - FEN;(x,), (1)
i=1

where E represents the total number of experts, W, is the weight of the gate, FFN; stands for the i-th
expert, and TopK(-) denotes the operation that preserves the top k scores among all E experts while
setting the remaining scores to —oo.

The training of MoE based LLMs can be categorized into token-drop and dropless. We adopt
the token-drop strategy to improve training efficiency. With this approach, each expert is assigned a
capacity limit specifying the maximum number of tokens it can handle. Once this capacity is reached,
any additional token routed to that expert is discarded.

To assess the effectiveness of the MoE architecture, we conduct a comparative study between
a dense model with 7 billion parameters and an MoE model with 2 billion activation parameters
out of a total of 24 billion parameters. The results, as illustrated in Figure 4, demonstrate that the
MoE model significantly outperforms the dense model under the same computational budget on
various benchmarks, including HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
Natural Questions(Kwiatkowski et al., 2019), PIQA(Bisk et al., 2020) and TriviaQA(Joshi et al., 2017).
When scaling up to larger models, we encounter the challenge of routing collapse, which arises
due to the concentrated distribution of tokens designated for allocation. To mitigate this issue, we
incorporate a simple global routing strategy to the GShard (Lepikhin et al., 2021) auxiliary loss for
better load balancing.

Auxiliary Loss. To ensure differentiability, the auxiliary loss is defined as Layx = Qaux - % Zle fi-mj,
where a,,x represents the coefficient of the auxiliary loss, f; denotes the fraction of tokens assigned
to the i-th expert, and m; is the average routing probability of expert i.

Global Router. The GPU memory size constrains the micro batch size in LLM training, leading
to substantial fluctuations in the token distribution within individual Expert Parallel (EP) groups.
Moreover, token distributions vary across different EP groups, potentially resulting in load imbalances
where experts in one EP group may be overloaded while those in another are underutilized. To
address this, we implement a global token dispatching strategy across EP groups. Specifically, we
introduce an additional allgather communication step to synchronize the number of tokens awaiting
processing by each expert before dispatching tokens across different EP groups. Under the same

MiniMax-01: Scaling Foundation Models with Lightning Attention

Q i N x d | : Q [Nxd
1 ! 1
| NxN h .
: | ' s |
KT: dx N E N x d : K'i| dxN i—»Nxd
N EEERREEECEEEEEEREEE . : i d x df—
v e A Y ;
Softmax Attention O(N?*d) Linear Attention 0(Nd?)

Figure 5 | Illustration of the computations for softmax attention (left) and linear attention (right).
The input length is N and feature dimension is d, with d < N. Tensors in the same box are associated
with computation. The linearized formulation allows O(N) time and space complexity.

capacity constraints, this global routing mechanism can effectively reduce the overall token drop rate,
thereby ensuring training stability.

2.2. Linear Attention

Linear attention utilizes the “right product kernel trick” to transform quadratic computational com-
plexity into linear complexity, as illustrated in Figure 5. By taking TransNormer (Qin et al., 2022a) as
an example, the NormAttention mechanism can be written as:

O = Norm((QK")V), (2)

where Q, K, and V € R"™ are the query, key, and value matrices, respectively, with n for sequence
length and d for feature dimension. The equation can be transformed into its linear variant using
right matrix multiplication:

0 = Norm(Q(K'V)), 3)

The linear formulation facilitates efficient recurrent prediction with a training complexity of O(nd?).
Furthermore, linear attention ensures a constant computational complexity of O(d?), irrespective of
the sequence length. This is accomplished by recurrently updating the term K"V, thereby obviating
the need for repetitive computation of the entire attention matrix. In contrast, softmax attention
incurs a complexity of O(nd) during inference.

When addressing causal language modeling tasks, the efficacy of the right product is compromised,
necessitating the computation of cumsum (Hua et al., 2022). This limitation impedes the realization of
highly efficient parallel computation, which likely explains why, despite being proposed by Brébisson
et al. (de Brébisson and Vincent, 2016) nine years ago, none of the current leading open-source
LLMs—including LLaMA3 (Dubey et al., 2024), Qwen2.5 (Yang et al., 2024), DeepSeekV3 (DeepSeek-
Al, 2024), and Mistral (Jiang et al., 2023)—have adopted this linear attention mechanism.

2.2.1. Lightning Attention

Lightning attention (Qin et al., 2024b,c) represents an I/O-aware, optimized implementation of
TransNormer (Qin et al., 2022a). This approach identifies the primary bottleneck in the computational
efficiency of existing linear attention mechanisms: the slow cumsum operation inherent in causal

MiniMax-01: Scaling Foundation Models with Lightning Attention

language modeling. To alleviate this problem, Lightning Attention proposes a novel tiling technique
that effectively circumvents the cumsum operation. The key innovation lies in the strategic division of
the attention calculation into two distinct components: intra-block and inter-block computations. The
left product attention calculation is employed for intra-block operations, while the right product is
utilized for inter-block operations. This division is crucial because the intra-blocks can be significantly
reduced in size, thereby ensuring that the overall computational complexity remains linear.

Note that the lightning attention was originally proposed by our team members in Qin et al.
(2024c), we recall some of the core processes to elucidate why it can achieve theoretical linear
complexity in practice for the sake of completeness. In the interest of analytical tractability, we
deliberately omit the consideration of normalization, sigmoid linear unit (SiLU) activation, and gating
mechanisms in the following derivation.

Let us start with the forward pass in lightning attention. The left product in causal attention
calculation is defined as:
0 =[(QK") o M]V 4)

where M;; = 1 if ¢t > s, otherwise 0. The right product operation can be computed in a recursive
formula as:
kvp = 0,kv, = kv,_1 +k, v/, 0] = q]kv. (5)

It is important to note that while Eq. 5 exhibits linear computational complexity, it is inherently
unparallelizable.

The fundamental concept underlying the implementation of lightning attention involves the
utilization of a tiling technique to compute attention scores. Specifically, the matrices Q, K,V are
partitioned into two distinct blocks along the row dimension:

X =

;1} ,Xp € R X, e R™Xd X e {Q,K, V).
2
By unfolding Eq. 4, we obtain the following expression (noting that kvy = 0):

kv, =kvp + ijv.T,s =1,...,m. o] =q,kv;=q/kvp+q, ijva. (6)
j=1 j=1
Rewrite it in block form, we have:
01 = Q1kvp + [(Q1K]) © M]V; £ Q1KV + [(Q:1K]) © M]V;. 7
As shown, the intra-block [(Q1K]) © M]V; can use the left product and the inter-block Q; KV, can
use the right product. Note that the intra-block can be further divided using the same strategy:
m+t

T T T
kv, = kv, + Z kivi,t=1,...,n—-m, 0., = Qi KV,

4 (8)
j=m+1
02 = Q2kvy,, + [(Q2K;) © M]V3 = Q2KVy + [(Q2K;) © M]Vs.

To compute the second block, we use KV; = kv,,,, which can be computed by:

m
KV; =KVo + > knvy, = KVo + K] V1. (9)
=1

where KVj = kvy. By recursively applying the aforementioned strategy of partitioning the matrix
into multiple blocks, the practical computational complexity can be reduced to linear. The final time
complexity of lightning attention is O(nd? + nBd), where B is the block size. Algorithm 1 illustrates
the I0-aware implementation of lightning attention forward pass.

MiniMax-01: Scaling Foundation Models with Lightning Attention

Algorithm 1 Lightning Attention Forward Pass

Input: Q, K,V € R™? block sizes B.
Divide X into T = % blocks X1, X, ... X7 of size B x d each, where X € {Q,K,V, O}.
Initialize mask M € REBXE, where M, = 1, if t > s, else O.
Initialize KV = 0 € R4,
fort=1,...,T do
Load Q;, K,, V, € RE*¢ from HBM to on-chip SRAM.
On chip, compute Ojpira = [(QK]) © M]V,.
On chip, compute Oipeer = Q:(KV).
On chip, compute KV = KV + K V,.
Write O; = Ojntra + Ointer to HBM as the t-th block of O.
end for
Return O.

2.2.2. Effectiveness of Lightning Attention

Although lightning attention demonstrates promise and competitive performance in small-scale
experiments, its scaling behavior and capability in the downstream tasks under large-scale settings
remain unexplored. To mitigate the gap, we conduct a series of scaling experiments to evaluate the
scalability of the lightning attention mechanism in comparison to softmax attention, meanwhile verifying
the performance on the extensive downstream tasks. It is noteworthy that during our experiments, we
observed that lightning attention demonstrates limited retrieval capabilities. This finding inspired
us to explore a hybrid approach (Hybrid-lightning) that takes the advantages of both lightning and
softmax attention to enhance retrieval performance by substituting lightning attention with softmax
attention at intervals of every eight layers.

We adhere to the FLOPs calculation methodology established by Kaplan et al. (2020). For the
purpose of our analysis, we define the following variables: I (number of layers), d (model dimension),
h (number of attention heads), b (batch size) and n (sequence length). The checklist of model
parameters and FLOPs is presented in Table 1.

Table 1 | Model Parameters and FLOPs Comparisons Across Architectures. For scaling law
calculations, embedding parameters and other subleading terms are excluded to improve alignment
with fitted results.

Architecture Parameter count FLOPs count
Softmax Attention 121d? 72bnld?(1+ & + 137)
Lightning Attention 121d? + 21d?/h 72bnld?(1 + 2= + 35)
Hybrid-lightning 121d? + 71d? /4h 72bnld?(1+ 75 + 14 + 137)

2.2.2.1 Experimental Setup

We conducted training on softmax (equipped with FlashAttention-2 (Dao, 2024)), lightning attention,
and hybrid-lightning attention models across various scales: 70 million, 160 million, 410 million, 1
billion, 3 billion, and 7 billion parameters. Each model was trained on a dataset consisting of up to
300 billion tokens, with a context length of 8192. Our training methodology follows the approach
proposed by Chinchilla (Hoffmann et al., 2022), where the training loss serves as a direct indicator
of test performance. For each model architecture and training sequence length, we maintained a

MiniMax-01: Scaling Foundation Models with Lightning Attention

Table 2 | Summary of Scaling Laws: It shows the relationships between loss (L), optimal model size
(Nope), and optimal dataset size (D,p) as functions of computational budget (C). It reveals that, given
the same budget, the hybrid model uses more parameters and tokens but achieves lower loss.

3.4797C~0-0763

ArCh ‘ L(C) ‘ Nopt(c) ‘ Dopt(c)
Softmax Attention | 3.7087C¢7*07%% | = (1.82x10%)c07M8 | (2.56 x 1010)C0-5102
Lightning Attention | 3.5391¢™%0768 | = (2.74x108)c%6470 | = (4.43 x 1010)c0-4684

Hybrid-lightning (2.57 x 108)¢0-6670 (3.70 x 1010)¢0-4707

Loss vs Compute Model size vs Compute , Tokens vs Compute

\
‘\ 101 o 1012
10°

108

Number of parameters

2 1w 109
10° 10t 102 103 1072 107t 10° 10t 10? 103 1072 107t

PFLOP/s-days PFLOP/s-days
Softmax Attention Lightning Attention M Hybrid-lightning

10° 10t 102 103
PFLOP/s-days

Figure 6 | Summary of Scaling Laws. Training curves (left) span models from 70M to 7B parameters.
Optimal model size (center) and training tokens (right) are derived based on a specified compute
budget estimation.

uniform global batch size of 4 million tokens. The Adam optimizer was employed, configured with a
learning rate of 3e-4 and a weight decay of 0.1. A fixed learning rate scheduler was applied across all
experiments due to constrained computational resources.

We employ a diverse set of evaluation benchmarks, including BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC (both easy and challenge variants) (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), Needle in A Haystack (NIAH) (Shen et al., 2024), and SCROLLS (Shaham et al., 2022). Each
benchmark assesses distinct capabilities of the models.

2.2.2.2 Scaling Laws

We fit the scaling curves based on our experiments over the above mentioned settings, where we
alter the model size (N) and dataset size (D) for different computational budget (C) and observe the
corresponding training loss (L) that serving as an estimator of test loss. We begin by establishing
power-law relationships between L and C, following Chinchilla’s methodology (Hoffmann et al.,
2022). Using the fitted curve, we derive coefficients for optimal model size N,,; « C* and optimal
dataset size Dop; o Cb. The original scaling laws (Kaplan et al., 2020) use L(X) = (Xo/X)*, while
subsequent studies (Clark et al., 2022; Gao et al., 2024; Henighan et al., 2020; Hoffmann et al., 2022)
employ L(X) = ¢ + (Xo/X)** for better fitting, where ¢ denotes the irreducible loss. For simplicity, we
unify these forms into L(X) = BxX*, facilitating a direct comparison of scaling capabilities based
on ay and Bx. The summary of scaling laws is shown in Table 2 and Figure 6. It can be intuitively
understood that given the same computational budget, models with lightning attention tend to utilize
more parameters and tokens, yet they achieve a lower loss compared to models with pure softmax
attention.

MiniMax-01: Scaling Foundation Models with Lightning Attention

1B Benchmark Performance

410M Benchmark Performance

PIQA HS WG ARC-E ARC-C OBQA CSR-AVG NIAH SCR) PIQA HS WG
3B Benchmark Performance o,

ARC-E ARC-C OBQA CSR-AVG NIAH SCR
7B Benchmark Performance o,

ol
ARC-E ARC-C OBQA CSR-AVG NIAH SCR PIQA HS WG
Softmax Attention

PIQA HS WG ARC-E ARC-C OBQA CSR-AVG NIAH SCR

Lightning Attention I Hybrid-lightning

Figure 7 | Larger models and hybrid-lightning attention achieve the best performance across
benchmarks. Performance is evaluated on CSR (Common Sense Reasoning), NIAH (Needle in a
Haystack), and SCROLLS benchmarks using three attention mechanism models from 410M to 7B
parameters.

2.2.2.3 Performance on Downstream Task.

We present the benchmark results of downstream tasks in Figure 7. Lightning attention demonstrates
comparable performance across most downstream tasks, with the exception of NIAH. This indicates
that linear attention exhibits similar language modeling capabilities to Transformer models but falls
short in retrieval tasks, rendering it unsuitable for LLMs. However, the hybrid-lightning attention not
only matches but surpasses the retrieval and extrapolation capabilities of softmax attention, making it
well-suited for in-context learning in LLMs.

19,000

17,000

2.2.2.4 Speed.

»

é 15,000 $. * .
We assess the end-to-end training speed of soft- g“'""" R e S
max attention, lightning attention, and hybrid- 3
lightning models with 3 billion parameters by £ s
measuring the tokens processed per GPU per ® 200
second (TGS). For completeness, we also in- 5000 Sequence Length

1024 4096 16384 65536

cluded popular linear models such as HGRN2
and Mamba2 in our evaluation. For the speed
benchmark, the training context length was

®—Hybrid-lightning —a&- Lightning Softmax Attention HGRN2 <& Mamba2

Figure 8 | The training speed of various attention

gradually increased until reaching the out-of-
memory limit on a single-node H800 GPUs. As
illustrated in Fig. 8, lightning attention achieves
a constant training speed irrespective of the se-
quence length and is the sole linear model that
outperforms FlashAttention2.

mechanisms, including softmax, lightning, hybrid-
lightning, HGRN2, and Mamba2, was bench-
marked across sequence lengths ranging from
1,024 to 65,536. Performance was measured in
terms of training speed, reported as tokens pro-
cessed per GPU per second (TGS).

10

MiniMax-01: Scaling Foundation Models with Lightning Attention

2.2.3. Hybrid Architecture

Our preliminary experiments with the hybrid architecture have yielded promising results, motivating
us to delve deeper into its potential through two variants: hybrid-cosformer2 and hybrid-hgrn2. In
the hybrid-cosformer2 model, we replace the linear attention layers in the cosformer2 architecture
with softmax attention layers at intervals of every eight layers. This substitution strategy is similarly
applied in the hybrid-hgrn2 model. We conduct experiments using consistent setups to evaluate the
downstream performance of these alternatives. Our findings, as summarized in Table 3, indicate that
the hybrid-lightning model achieves the best performance.

Table 3 | Benchmarking various hybrid-linear models with 1 Billion Parameters. We present the
average CSR score, weighted average accuracy for NIAH, and the average SCROLLS score. Higher
scores indicate better performance across all tasks. Abbreviations: TGS (token per gpu per second),
HS (HellaSwag), WG (WinoGrande), OBQA (OpenBookQA), NIAH, and SCR (SCROLLS).

Hybrid-linear Arch. TGS 1 | PIQAT HS! WG! ARC-E] ARC-C! OBQA! CSRT|NIAHT SCR1

Hybrid-cosformer2 23.3K | 70.29 45.63 51.46 55.77 26.11 30.60 46.64| 43.6 10.9
Hybrid-hgrn2 29.5K | 70.89 51.23 56.51 59.68 28.50 3240 49.87| 91.8 10.8
Hybrid-lightning 33.4K | 70.73 50.41 55.80 59.93 27.65 32.80 49.55| 95.7 13.3

In addition to linear models, sliding window attention can also achieve linear computational
complexity by appropriately adjusting the window size. As it is grounded in softmax attention,
it serves as a robust baseline for evaluating linear architectures. Therefore, we incorporated the
hybrid-window approach by replacing lightning attention in hybrid-lightning with sliding window
attention. We evaluated various window sizes of SWA ranging from 256 to 1024. Our results indicate
that larger window sizes lead to slower training speeds compared to the hybrid-lightnin